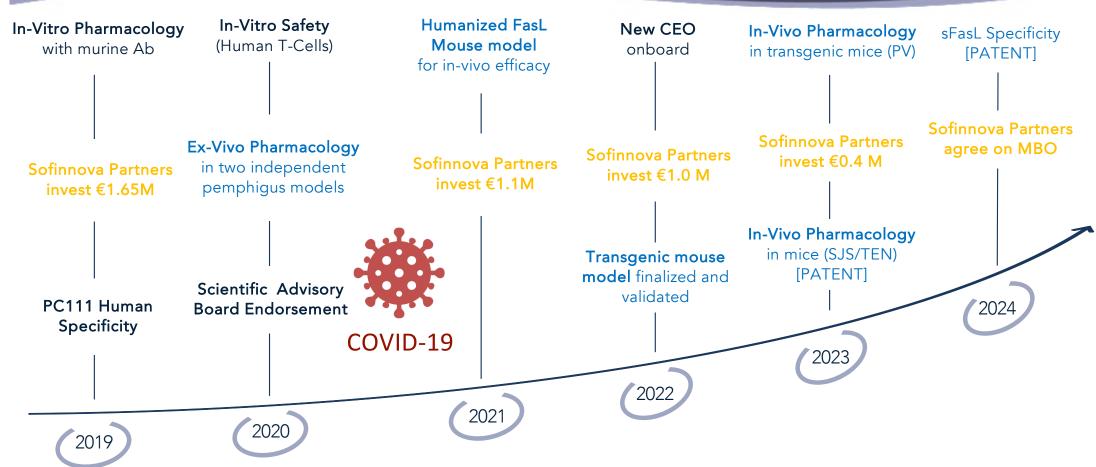


PC111

A novel, First In Class, fully human anti-FasL mAb for the treatment of Pemphigus, SJS/TEN and other underserved skin disorders

Executive Summary



- PinCell, academic spin-off of the University of Modena-Reggio Emilia (Italy)
 previously seed funded by Sofinnova
- Novel target in skin blistering diseases (hu-FasL) using a fully human monoclonal Ab (PC111) with a unique, non-immunosuppressive MoA
- Targeting two undertreated orphan indications
 - Pemphigus: 300,000 patients worldwide, one approved treatment with high unmet medical need and a 5-15% mortality
 - Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN):
 5,000-10,000 patients, no approved treatment and up to 30% mortality
 - Combined blockbuster potential, with upside in other indications with significant underserved needs

Main Achievements

Oct 2024

Experienced Team and Board of Directors

Tony Amato, MD CEO

- Former CEO/CMO Betaglue Technologies
- Former Director CTC Pol. Gemelli, Rome
- Former Sigma Tau Development Director
- > 30 years in healthcare industry

Carlo Pincelli, MD Co-Inventor, CMO

- Professor of Dermatology, Chief Laboratory of Cutaneous Biology at University of Modena and Reggio Emilia for 25 years
- Proven track record in basic and clinical research

Brydon Bennett, PhD CSO

- >25 yrs. of experience in pharmaceutical discovery
- Previously at Signal Pharmaceuticals and since 2000 at Celgene (I&I section) until 2018.
- Projects he has championed are currently in all 3 phases of clinical development

Tony Amato, MD Chairman & CEO

- Former CEO/CMO Betaglue Technologies
- Tony Amato, MD Former Director CTC Pol. Gemelli, Rome
 - Former Sigma Tau Development Director
 - > 30 years in healthcare industry

Carlo Pincelli, MD Co-Founder, Co-Inventor

- Professor of Dermatology, Chief Laboratory of Cutaneous Biology at University of Modena and Reggio Emilia for 25 years
- · Proven track record in basic and clinical research

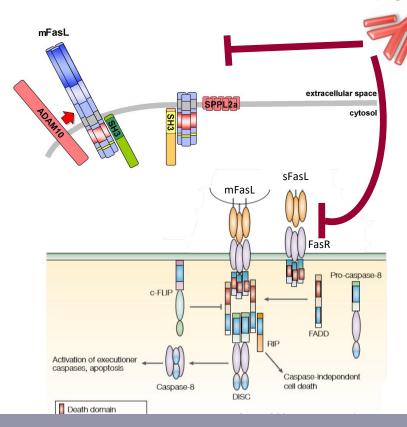
Roberta Lotti, PhD Project Manager & Senior Researcher

- Biotechnologist and Clinical Pathologist with almost 20-yr. experience in research
- Development of several pemphigus models in-vitro, ex-vivo and in-vivo

Oct 2024 Non-Confidential Presentation

Scientific Advisory Board

Distinguished panel of experts in SJS/TEN, Pemphigus and FasL biology



Donna Culton , MD, PhD	Associate Professor of Dermatology, Associate Director, Clinical Trials Unit	University of North Carolina, Chapel Hill, NC
Lars E. French, MD, PhD	Professor and Chairman Department of Dermatology and Allergy	University Hospital, Munich
Michael Rosenblum, MD, PhD	Associate Professor of Dermatology	UCSF, San Francisco CA
Ann M. Rothstein, PhD	Professor of Medicine	University of Massachusetts Medical School, Worcester MA
Animesh A. Sinha, MD, PhD	Associate Professor of Dermatology	University of Buffalo, Buffalo, NY
Eli Sprecher, MD, PhD	Director Department of Dermatology; Deputy Director R&D	Tel Aviv Medical Centre, Tel Aviv
Victoria P. Werth, MD	Chief, Dermatology Professor of Dermatology	University of Pennsylvania, Philadelphia, PA
Riichiro Abe, MD, PhD	Professor of Medicine	Niigata University, Japan

The Target - FasL/Fas Pathway

Fas Ligand (CD95L, CD178)

- Type II transmembrane protein, member of TNF family
- Expressed on immune cells (activated T cells, NK cells), immune privileged tissues and tumours as membrane-bound FasL (mFasL)
- Active as homotrimer, can be processed to a soluble form (sFasL) by metalloproteinases during several disease conditions

Fas Receptor (CD95, Apo1)

Member of the TNF and NGF families, with broad distribution

Role of FasR/mFasL binding-induced cells apoptosis in:

- Immune cells homeostasis, to limit T cells expansion after antigen elimination
- Maintaining immune privilege in specific tissues

Role of FasR/sFasL binding-induced cells apoptosis in:

Driving blister formation (acantholysis) in keratinocytes

Waring et al 1999, Immunology and Cell Biology (mod.)

The Product - PC111 Overview

PC111
Anti-human FasL mAb

Human monoclonal anti-human FasL antibody [IgG4, k]

Novel, non-immunosuppressive Mode of Action relevant in the pathogenesis of several skin blistering disorders

Target Selectivity: specific for sFasL, no off- targets from 6000 membrane proteome array (including mFasL)

High binding affinity (KD<200pM) to human soluble FasL

The Product - PC111 Overview

PC111
Anti-human FasL mAb

Optimal solubility, allows reaching high concentrations (>70mg/ml)

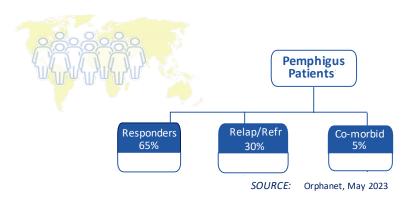
Low in-silico immunogenicity

Drug product manufacturing: small scale-up to 2.4 grams in transient transfected HEK and CHO; observed yield > 600 mg/L

Species Cross Reactivity (sFasL): no binding to mouse, partial binding to dog; primate sequence identity with human is 97%

Permigus – An Unmet Medical Need

Characteristics


Course of disease

Epidemiology²

Approved Treatment

Unmet Medical Needs

Market Size by 2030

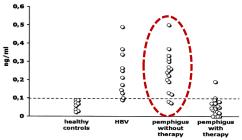
Pemphigus¹

Autoimmune disease, with blisters and erosions of skin/mucosae; diagnosed in middle age

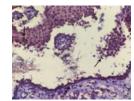
Chronic, debilitating and life-threatening
Overall mortality 5-15% due to side effects (3x controls)

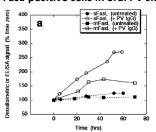
Prevalence 1,92/10,000 worldwide Target population ~300,000 patients worldwide

Rituximab plus steroids (2020)

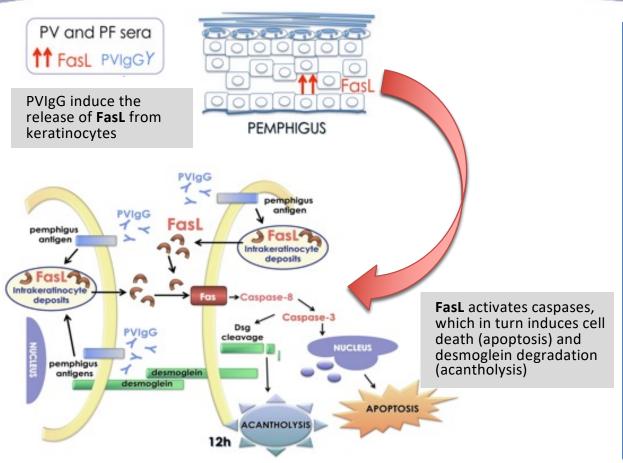

Relapsing (up to 60%) and refractory patients Severe side effects of extended immune-suppression

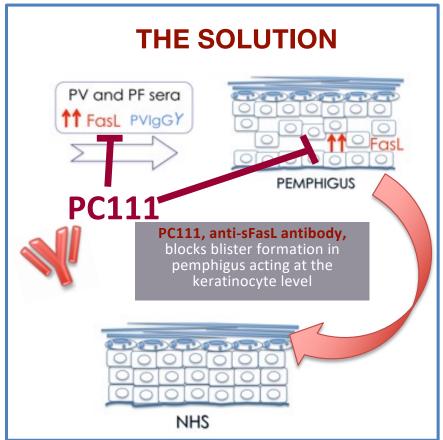
 \sim 1B\$ growing at a CAGR of 8%³


FasL in Pemphigus - Strong Validation


- FasL is increased in **sera** of pemphigus patients (Puviani et al, 2003)
- FasL positive cells are present in the **skin** of patients with oral pemphigus (Deyhimi and Alishahi, 2018)
- In dogs with pemphigus foliaceous, the Fas pathway was significantly overexpressed compared to healthy controls by micro-array analysis on skin (Starr et al, 2024)
- PV-IgG's induce FasL release from keratinocytes in-vitro (Wang et al, 2004)
- **FasL released** from keratinocytes upon PV-IgG treatment is responsible for acantholysis through caspase-8 activation followed by Dsg-3 cleavage (Lotti et al, 2018)
- **FasL downregulation** counteracts PV-IgG effect, as shown by FasL silencing in human keratinocytes *in-vitro* (Lotti et al, 2018)

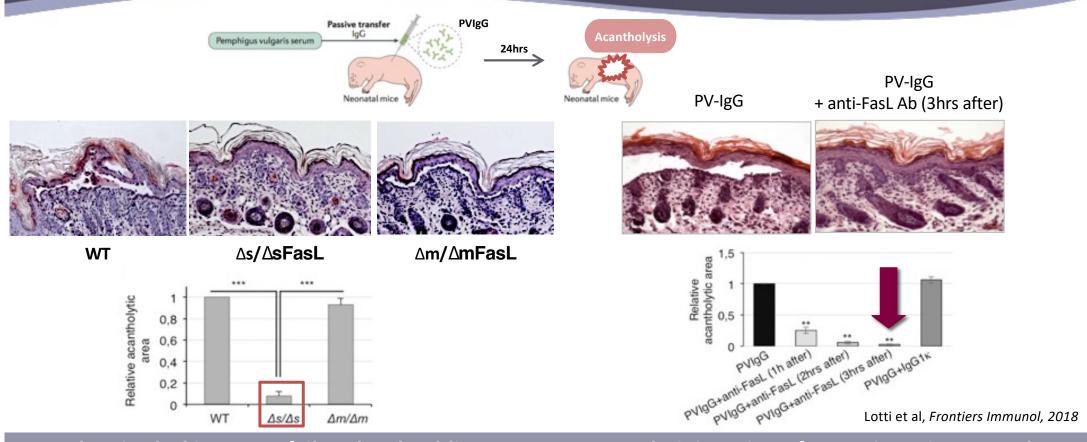
Detection of FasL in pemphigus sera


FasL-positive cells in oral PV skin

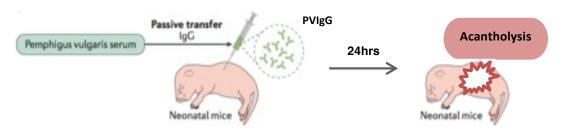


PV-IgG induce FasL release from keratinocytes

FasL in Pemphigus – Role of PC111

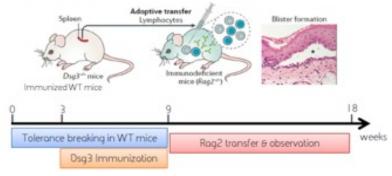


FasL is essential for blister formation in-vivo


Only mice lacking sFasL fail to develop blisters upon injection of PV-lgG's

Administration of an anti-murine FasL Ab blocks blister formation

FasL blockade is effective in PV models



Passive pemphigus mouse model

 Anti-murine FasL mAb blocked blister formation in a dose-dependent manner in a neonatal passive transfer pemphigus mouse model

Active pemphigus mouse model

- Anti-murine FasL mAb induced a rapid PV score reduction in an adult active pemphigus model
- Anti-FasL mAb showed a less dramatic weight loss vs. control or steroid-treated groups
- Anti-FasL mAb increased survival rate in treated animals

PC111 in Pemphigus: PoC Studies

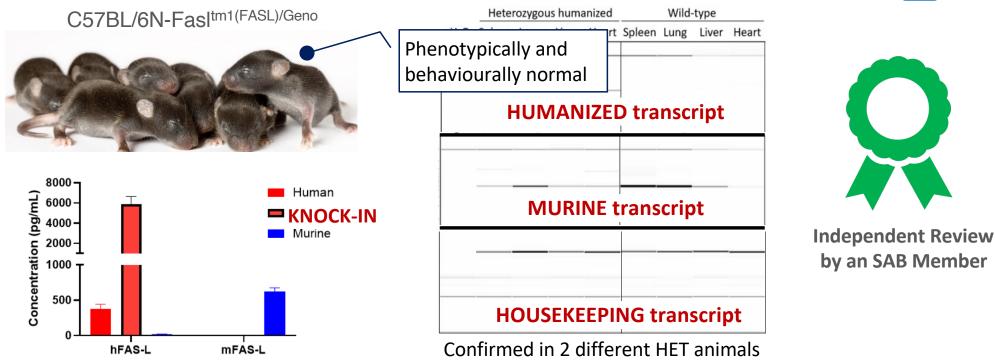
In-vitro

- PC111 is effective in **preventing FasL-dependent acantholysis** of normal human keratinocytes in a **dose dependent** manner (Lotti et al, Front Immunol 2023)
- In activated human primary T-cells, PC111 did not affect mFasL dependent apoptosis

Ex-vivo

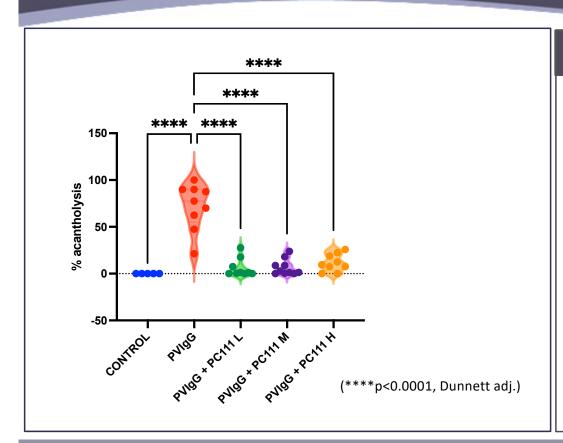
- PC111 was tested in 2 independent ex-vivo pemphigus human skin models:
 - It significantly reduced blister formation by 50% in a severe PV model
 - It dramatically **blocked blister extent** in a milder pemphigus model (Lotti et al, Front Immunol 2023)

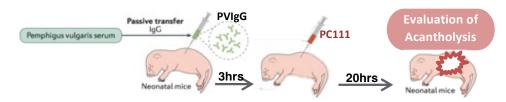
In-vivo


- We have successfully developed a proprietary in-vivo platform for PC111 testing: the first FasL humanized mouse model
 - PC111 efficacy confirmed in such mice with passive transfer of PV-IgG's
- PK/PD study completed

FasL Humanized Mouse Model

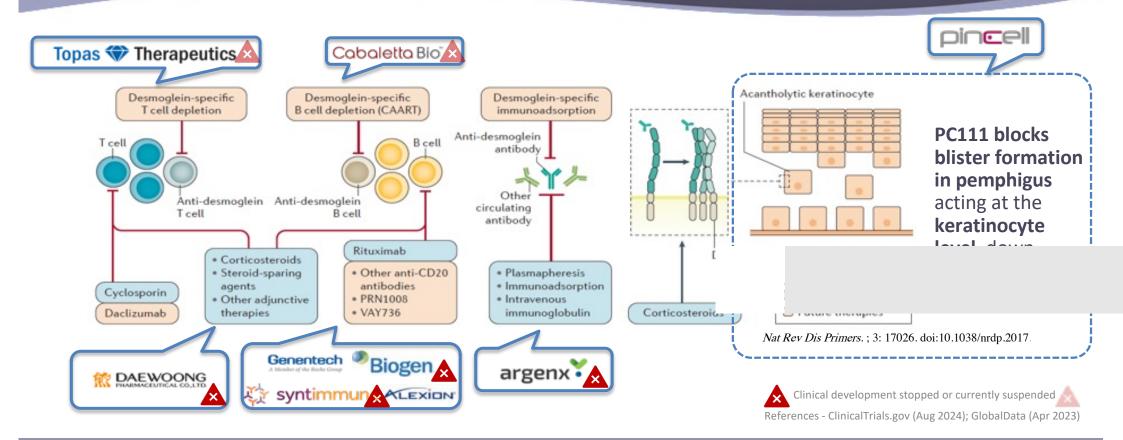
First **HUMANIZED FASL MOUSE MODEL** for *in-vivo* pre-clinical studies




Human soluble FasL protein quantified by ELISA

PC111: Studies in Humanized FasL Mice

Neonatal PVIgG Transfer Study (Gold Standard)


University of Modena - CSSI

- PV-IgG's from patients used to induce disease
- Three PC111 doses used for dose-response relationship (Low, Medium, High)
- PC111 blocks blister formation (>90%) in a validated model of treatment

PC111 in Pemphigus: Unique Mode of Action

Targeted disease-modifying treatment, with rapid onset and better safety than immunosuppressants

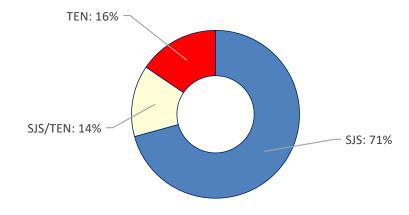
PC111: a significant step forward vs. competitors

Molecule ⁷	Description	Current stage
PRN 1008	Bruton's Tyrosine Kinase (BTK) inhibitor Inhibits B cell activation and antibody induction.	Phase III STOPPED for pemphigus
lanalumab/VAY736	Fully human antibody against BAFF-R (B-cell activation factor receptor) Depletes peripheral B-cells and inhibits production of clones in germinal centers	Phase II STOPPED for pemphigus
Efgartigimod/ARGX-113	Fc fragment anti-human FcRn (Fc Neonatal Receptor) Blocks IgG recycling and increases IgG clearance	Phase III STOPPED for pemphigus
Orilanolimab/SYNT001	Humanized IgG4 mAb to block IgG interactions with neonatal Fc receptor (FcRn)	Phase I/II DISCONTINUED for pemphigus
DSG3-CAART	Autologous chimeric autoantibody receptor (CAAR) T cell therapy to target B cells producing autoAbs to DSG3	Phase I SUSPENDED for pemphigus
TPM203	Nano-particle based therapeutic for T-reg stimulation	Phase I SUSPENDED for pemphigus

Oct 2024 Non-Confidential Presentation 18

PC111: Positioning in Pemphigus

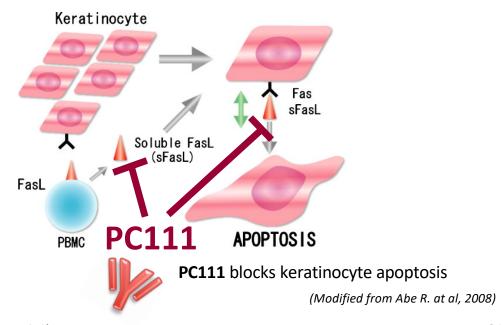
- First targeted therapy
 - Non-immunosuppressive, acting downstream of the immune system
 - Local site of action at the keratinocyte level
 - Rapid mode of action
- First-line therapy w/wo steroids
 - Potential combination with Rituximab (separate/complimentary MoA's)
 - Bridge therapy before Rituximab achieves clinical remission
 - Potential steroid sparing/avoiding effect
- Second-line therapy in relapsing/refractory patients (35% overall)
 - Quicker induction of remission
 - Potential steroid and/or immunosuppressant sparing/avoiding effect


Puviani et al, J Invest Dermatol, 2003; Lotti et al, Curr Pharm Biotechnol, 2012; Lotti et al, Front Immunol 2018

SJS/TEN – Life-Threatening, No Approvals


Stevens-Johnson Syndrome / Toxic Epidermal Necrolysis ¹		
Characteristics	Toxic dermatosis associated with drugs or infections (SJS<10% BSA, TEN>30% BSA); onset at any age	
Course of disease	Acute and often life-threatening Overall mortality 8% (≥30% in TEN patients)	
Epidemiology ²	Incidence 1-2/1,000,000 worldwide Target population ~5,000-10,000 patients worldwide	
Approved Treatment	No approved treatment ICU/burn unit care setting needed	
Unmet Medical Needs		
Market Size by 2030	> 8B\$ growing at a CAGR of 4% ³	

Incidence of Different Forms of SJS/TEN (Hsu et al, 2012)

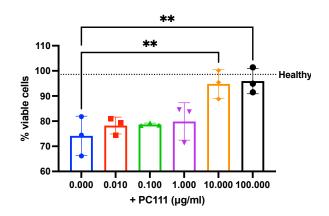

FasL in SJS/TEN: Strong Validation

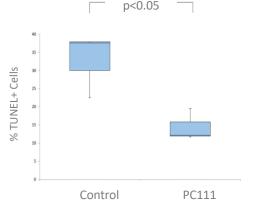
- The clinical course of the disease is closely related to the change of serum sFasL
- Soluble FasL is detected before and at the onset of the disease, to decline few days later

- Skin detachment is due to extensive death of keratinocytes (Abe R. at al, 2003)
- Aberrant activation of the immune system by the causative drugs causes SJS/TEN through high levels of sFasL

(Abe R. at al, 2008)

PC111: PoC Data in SJS/TEN

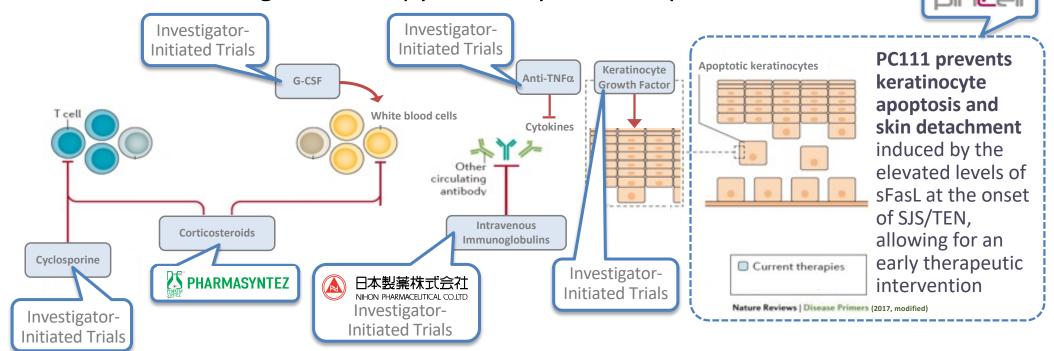

In-vitro Study (Prof. R. Abe) STUDINIVERSITY



- SJS/TEN donor serum confirmed to have elevated sFasL
- PC111 rescues viability of HaCaT cells exposed to serum
- Dose-dependent response (≥10 μg/mL)

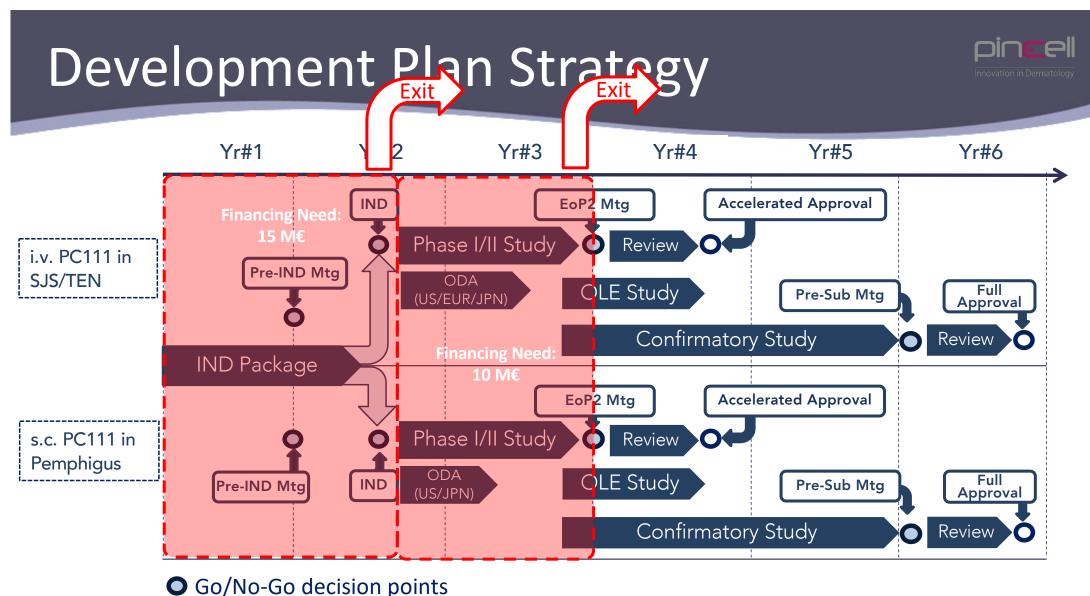
In-vivo Study (Prof. R. Abe)

- **Prevention of conjunctivitis** in an established SJS/TEN model induced by patients' PBMCs plus acetaminophen
 - PC111 single-dose at day 0 and every 2 days up to day 12
- PC111 group had a significantly (p<0.05) lower percent of **TUNEL positive cells** and reduced hyperemia of conjunctiva (Saito et al, J Invest Dermatol 2024)



PC111 in SJS/TEN: Highly Differentiated

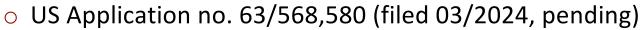
No molecules or targeted therapy currently in development for SJS/TEN


References - 10) ClinicalTrials.gov (Apr 2023); 11) GlobalData (Apr 2023)

PC111: a significant step forward

No approved treatment currently available for SJS/TEN

Recent Meta-Analyses	Treatments	Results	Conclusions
Torres-Navarro et al. JEADV 2020	IVIg + Cyclosporin + Steroids	Combination associated with less deaths than predicted by SCORTEN	No treatment achieved a significant result
Singh et al, Skin Therapy Letter 2022	IVIg + Cyclosporin + Steroids + Etanercept	Combination reduces mortality	Complex data and conflicting results: no treatment can be recommended
Jacobsen et al, Cochrane DB 2022	Steroids, IVIg, Cyclosporin, Etanercept	No difference vs. no therapy, except for Etanercept* vs. steroids = slight mortality reduction	*CI not confirmed More studies needed
Tsai et al, JAAD 2020	Steroids, IVIg, Cyclosporin, Etanercept	Steroids + IVIg = reduced mortality Etanercept and Cyclosporine= inconclusive data	Low numbers, more studies needed
Krajewski et al, Burns 2022	Steroids, IVIg, Cyclosporin, Etanercept	Etanercept associated with lowest mortality Most negative outcome for IVIg	No randomization or double- blind control
Wang et al, JCI 2017	Etanercept vs. Steroids	Improved outcome: reduced skin-healing time, decreased mortality	Randomized trial needed


Additional Indications for PC111

Disease	Epidemiology	Rationale	
Drug-induced hypersensitivity syndrome (DIHS) ⁷	Yr. incidence 1.2-6.0/1,000,00020% mortality rate	 High sFasL levels in patients sera correlating with disease severity 	
Drug reaction with eosinophilia and systemic symptoms (DRESS)8	 Yr. incidence 0.1-1.0/1,000 (anticonvulsants therapy) 10% mortality rate, (acute hepatitis) 	 High sFasL levels in patients sera correlating with disease severity 	
Erosive Oral and Genital Lichen Planus ⁹ (risk for Squamous Cell Ca.)	 Prevalence varies from 0.5-2.6% (oral) to 0.1-1.7% (vulvar) worldwide 	High sFasL levels in patients sera	
Acute Respiratory Distress Syndrome ¹⁰	 Yr. incidence: 3 million cases worldwide Functional and cognitive impairment in 50% patients Mortality rate up to 40%% 	 High FasL levels in plasma, bronchial lavage, and lung tissue Correlation between sFasL levels and death 	
Rheumatoid Arthritis ¹¹	1% general population worldwide	High sFasL levels in joints and synovial fluidssFasL stimulates synoviocyte proliferation	
Systemic Lupus Erythematosus ¹²	 Incidence: 5/100.000 persons/years Mortality rate of 22.2 per 1000 person-years 	sFasL levels are markedly increasedHigh sFasL is related with active disease	
Sjogren syndrome ¹³	Incidence: 0.5-1% general population	High sFasL levels in in saliva and seraNo correlation with disease severity	

Intellectual Property, Market/Data Exclusivity

- Remedies for pemphigus containing anti FasL antibodies
 - WO 2010/066914 (filed 12/2009, granted)
- Anti-Fas Ligand (FasL) Antibodies in the Treatment of SJS/TEN
 - PCT Application WO2024/200287 (priority date: 03/2023, pending)

- Orphan Drug Designation (EUR) in Pemphigus
 - EU/3/12/956 (granted)
- Orphan Drug Application (USA, JPN) in Pemphigus (planned)
- Orphan Drug Application (EUR, USA, JPN) in SJS/TEN (planned)
 - Rare Pediatric Disease Priority Review Voucher can be claimed (FDA)
- Biologics Data Exclusivity (EUR, USA, JPN, RoW)

Conclusion

- Novel, fully human mAb with a unique non-immunosuppressive MoA in skin blistering diseases with significant medical needs, large addressable markets and rising CAGR's
- Patent and EUR-ODD granted in pemphigus, with additional patent families and/or ODA's submitted or in preparation also for SJS/TEN
- Upside potential in other underserved diseases with high levels of FasL
- Safety and efficacy data obtained from PoC studies in validated pemphigus and SJS/TEN models, using a proprietary humanized FasL mouse platform
- Ready to start IND-enabling studies
- Looking to exploit PC111 potential in SJS/TEN and pemphigus, either through a Series A round of 15-25M€ (until IND or Ph1/2 studies readouts), or the asset co-development/acquisition

Contacts

Antonino Amato, MD
Chairman and Chief Executive Officer
a.amato@pincell.it

Via Visconti di Modrone, 18 20122 Milano, ITALY

info@pincell.it
https://www.pincell.it/

